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1 Sheppard’s Lemma and Noise Sensitivity of LTFs

1.1 Recap: Noise stability of the majority function

Last time, we saw the noise stability of the majority function.

Theorem 1.1. For all ρ ∈ [−1, 1],

Stabρ(MAJn)
n→∞−−−→ 2

π
arcsin ρ.

The only missing piece for us was Sheppard’s lemma. We will also see that the majority
is the stablest among LTFs via the following result concerning noise stability.

Theorem 1.2 (Peres). For every LTF f , NSδ(f) = O(
√
δ).

1.2 Multivariate Gaussians

Definition 1.1. A random variable Z = (Z1, . . . , Zn) ∈ En is called a multivariate
Gaussian (MVG) if for any linear function ` : Rn → R, `(Z) is a univariate Gaussian.

Remark 1.1. We can’t just say that the marginal distributions are Gaussians because we
could have Z1 ∼ N(0, 1) and

Z2 =

{
Z1 with probability 1/2

−Z1 with probability 1/2.

These are both Gaussian, but Z1 + Z2 is not Gaussian.

A multivariate Gaussian distrbituion is parameterized by an n -dimensional mean vector
µ ∈ Rn and an n× n covariance matrix Rn×n. We write

Z ∼ N(µ,Σ), E[Zi] = µi, Cov(Zi, Zj) = E[(Zi − µi)(Zj − µj)].

The standard multivariate Gaussian is Z ∼ N(0, In). Alternatively, Z1, . . . , Zn are iid
stndard Gaussians.
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Proposition 1.1. For any fixed µ ∈ Rn, X simN(µ,Σ) if and only if there exists a linear
transformation A ∈ Rn×k such that x = AZ + µ, where Z ∼ N(0k, Ik).

Proof. We only prove one direction. Suppose that X = AZ + µ, where Z ∼ N(0k, Ik).
Then `(X) = `′(Z) is a linear combination of the marginals of Z, so `(Z) is a univariate
Guassian random variable. More explicitly,

E[Xi] = E[(AZ)i + µi] = E

∑
j

Ai,jZj + µi

 = µi,

Cov(Xi, Xj) = (AA>)i,j =⇒ Σ = AA>.

One of the most important properties of the standard multivariate Gaussian distribution
is that it is rotationally symmetric. Let Z = (Z1, . . . , Zn) ∼ N(0n, In), which has joint
probability density function

fZ1,...,Zn(z1, . . . , zn) =
n∏
i=1

1√
2π
e−z

2
i /2 =

(
1√
2π

)n
e−(z

2
1+···+z2n)/2

Note that this probability density function only depends on z21 + · · · + z2n; that is, it only
depends on the radius of the vector (z1, . . . , zn).

Corollary 1.1. Let Z = (Z1, . . . , Zn) ∼ N(0n, In). Then Z
‖Z‖2 is a uniformly random unit

vector in Rn.

1.3 Sheppard’s lemma

Definition 1.2. Two Gaussians (Z1, Z2) are ρ-correlated if

(Z1, Z2) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
.

Equivalently,

Z =

[
1 0

ρ
√

1− ρ2

] [
X1

X2

]
,

where X ∼ N(02, I2).

Lemma 1.1 (Sheppard). Let (Z1, Z2) be ρ-correlated Gaussians. Then

P(sgn(Z1) 6= sgn(Z2)) =
1

π
arccos ρ.
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Proof. Let X1, X2 be independent standard Gaussians, and let[
Z1

Z2

]
=

[
1 0

ρ
√

1− ρ2

] [
X1

X2

]
.

Note that if the first row of this matrix is u and the second row of this matrix is v, then
Z1 = 〈u,X〉 and Z2 + 〈v,X〉. Then

P(sgn(Z1) 6= sgn(Z2)) = P(sgn(〈u,X〉) 6= sgn(〈v,X〉))
= P(sgn(〈u, X

‖X‖〉) 6= sgn(〈v, X
‖X‖〉)),

where X
‖X‖ is a uniformly distributed unit vector in R2. Noe ρ = 〈u, v〉 = cos θ, so θ =

arccos ρ, where θ is the angle between the unit vectors u and v. Now we can check which
unit vectors in R2 give a different sign for inner product with u vs inner product with v:

Vectors in arcs of total angle 2θ will make these signs disagree, so we get

P(sgn(Z1) 6= sgn(Z2)) =
2θ

2π
=

arccos ρ

π
.

1.4 Noise sensitivity of linear threshold functions

Recall that if f : {±1}n → {±1} and δ ∈ [0, 1], the noise sensitivity of f (at noise rate
δ) is given as follows.

• Pick X ∼ {±1}n uniformly at random.

• Pick Y by flipping each bit in X independently with probability δ.
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NSδ(f) = P(f(X) 6= f(Y )).

We saw before that the noise stability is related to the noise sensitivity by

NSδ(f) =
1

2
− 1

2
Stab1−2δ(f).

We are interested in proving the following theorem.

Theorem 1.3 (Peres). If f is an LTF, then for all δ, NSδ ≤ O(
√
δ).

First, we prove the following claim.

Lemma 1.2. If f : {±1}n → {±1} is an LTF, then I(f) ≤ I(MAJn) ≤
√
n.

Proof of lemma. Let f = sgn(a0 + a1x1 + · · ·+ anxn). If f is monotone, then

I(f) = Eff(f) ≤ Eff(MAJn) ≤
√
n.

Not every LTF is monotone, but up to flipping the value of the inputs, we can write f as
a monotone function g. For example, if we look at the non-monotone function

f(x) = sgn(x1 − 3x2 + 5x3 + 7x4 − x5),

we can write it as

f(x) = sgn(x1 + 3(−x2) + 5x3 + 7x4 + (−x5)) = g(x1,−x2, x− 3, x4, x5),

where
g(y) = sgn(x1 + 4x2 + 5x3 + 7x4 + x5).

Then

I(f) =
n∑
i=1

Infi(f) =
n∑
i=1

Infi(g) = Eff(g) ≤ Eff(MAJn) ≤
√
n.

Remark 1.2. This proof actually applies to any unate function f , not just LTFs.

Theorem 1.4. Let C be any class of functions that is closed under projections (LTFs are
such a class). Suppose that for all n bit functions in this class, I(f) ≤ A(n). Then for
every positive integer m,

NS1/m(f) ≤ 1

m
A(m).

What is a projection? First, let’s see how this implies Peres’ theorem.

Proof of Peres’ theorem. Let δ > 0. We want to show that NSδ ≤ O(
√
δ). Take m = d1/δe.

Then NSδ(f) ≤ NS1/m(f) because noise sensitivity is monotone in the parameter. So taking
A(n) =

√
n in the theorem, we get

NSδ(f) ≤ 1

m

√
m =

1√
m

= O(
√
δ).
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What is a projection? A restriction takes f(y1, . . . , yn) and replaces each yi with −1,
+1, or yi.

Definition 1.3. A projection takes f(y1, . . . , yn) and replaces yi with −1, +1, z1,. . . , zn,
−z1,. . . , or −zn.

Example 1.1. If f(y) = sgn(a0 + a1y1 + a2y2 + a3y3 + a4y4), then we can replace y1, y2
by z2, y3 by z1, and y4 by −z1. Then the projection gives

g(z1, z2) = sgn(a0 + (a1 + a2)z2 + (a3 − a4)z1).

Many classes of functions are closed under projections, so this is not a very strong
assumption.

Proof of theorem. Let f ∈ C. Then, letting X be uniform and letting Y be obtained by
flipping each bit with probability 1/m,

NS1/m(f) = P(f(X) 6= f(Y )).

Let’s see another way to sample X and Y :

Step 1: Pick X uniformly at random.

Step 2: Partition the n coordinates to m parts uniformly at random, giving a map
π : [n]→ [m].

Step 2.5: Pick Z ∈ {±1}m uniformly at random. Attain X ′ by flipping each i part if
Zi = −1.

Step 3: Pick a random part j ∈ [m] and attain y by flipping all coordinates in the
j-th part in X ′.

This gives the desired distribution for (X ′, Y ):

NS1/m(f) = PX,π,Z,j(f(X ′) 6= f(Y ))

= EX,π[PZ,j(f(X ′) 6= f(Y ))]

Define gx,π(z) = f(x1 · zπ(1), x2 · zπ(2), . . . , xnzπ(n)). This is a projection of f , so gX,π ∈ C.

= EX,π[PZ,j(gX,π(Z) 6= gX,π(Z⊕j))]

= EX,π

 1

m

m∑
j=1

Infj(gX,π)


≤ A(m)

m
.
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This tells us that LTFs are ε-concentrated up to degree O(1/ε2). So the LMN lemma
tells us that we can learn LTFs in no(1/ε

2) time.
Later, we will prove the “majority is stablest” theorem. The Fourier representation for

noise stability is

Stabρ(f) =
∑
S

f̂(S)2ρ|S| = ρW 1(f) + ρ2W 2(f) + · · · .

So for small ρ, we can understand the noise stability by studying

W 1(f) =
n∑
i=1

f̂({i})2.

Analyzing this with the Berry-Esseen theorem will give the following.

Theorem 1.5 (2/π theorem). Let f : {±1}n → {±1} satisfy |Effi(f)| ≤ ε. Then

W 1(f) ≤W 1(MAJn) +O(ε) ≈ 2

π
.
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